

76° CONGRESSO NAZIONALE ATI

ROMA 15/17 SETTEMBRE 2021

TRANSIZIONE ECOLOGICA E DIGITALE:

Il ruolo dell'energia

GREEN HYDROGEN

Programmi e obiettivi

76° CONGRESSO NAZIONALE ATI

ROMA 15/17 SETTEMBRE 2021

TRANSIZIONE ECOLOGICA E DIGITALE:

Il ruolo dell'energia

GREEN HYDROGEN

Programmi e obiettivi

Il ruolo degli stakeholder

Gian Piero Celata, Presidente Cluster Tecnologico Nazionale Energia

Cluster & Energia

I Cluster Tecnologici Nazionali

- 2012 Aerospazio, Agrifood, Chimica verde, Fabbrica intelligente, Mezzi e sistemi per la mobilità di superficie terrestre e marina, Scienze della Vita, Tecnologie per gli ambienti di vita, Tecnologie per le Smart Communities
- 2016 Creatività e Made in Italy, Economia del mare, Tecnologie per il Patrimonio Culturale, Energia
- **CTN** Partenariato pubblico/privato che opera sul territorio nazionale per la ricerca industriale, la formazione e il trasferimento tecnologico, con lo scopo di coordinare e rafforzare il collegamento tra ricerca e imprese

Il Cluster Tecnologico Nazionale Energia Ruolo e Associati

- Compito di coniugare la domanda di innovazione del settore industriale con l'offerta delle strutture di ricerca del Paese per supportare la transizione energetica e quindi il raggiungimento dei target previsti dall'*Unione Europea*, e a livello nazionale dal *PNIEC*, attraverso i programmi di finanziamento della ricerca: *Horizon Europe*, *IPCEI*, *PNRR*, *PNR*, *RDSE*, *Mission Innovation*, *Bandi Nazionali e Regionali*
- **Fondatori**: ENEA, CNR, RSE, e-distribuzione, ENI, NUOVO PIGNONE TECNOLOGIE, TERNA, EnSiEL
- Associati (77): 15 soggetti territoriali (alcuni dei quali distretti territoriali inglobano numerose PMI), 11 grandi imprese, 51 Università e EPR
- **Riferimento** per gli Organismi istituzionali e le Amministrazioni regionali e nazionali

Ambiti Tecnologici Prioritari (Piano di Azione Triennale, giugno 2021)

- **Reti e microreti smart**: tecnologie, sistemi e metodologie di gestione e controllo
- Accumulo energetico: tecnologie e sistemi di gestione e controllo
- Smart Grid: dispositivi innovativi, tecnologie e metodologie di misurazioni
- Efficienza energetica e fonti energetiche rinnovabili
- Smart Energy
- Catena del valore dell'idrogeno e della CCUS

Roadmap tecnologiche (3-5 per ciascun ambito prioritario, per un totale di 24)

Mobilità sostenibile, power-to-gas, reti energetiche integrate, digitalizzazione e misurazione intelligente, gestione dell'accumulo di energia, produzione di energia ed efficienza degli usi finali, produzione di energia da fonti rinnovabili (focus solare, eolica), integrazione delle FER negli edifici e nell'ambiente, comunità energetiche locali, prodotti biochimici e biocarburanti, simbiosi industriale nel settore energetico (recupero energetico da rifiuti termici), idrogeno e CCUS

Aree tecnologiche prioritarie

A. Reti e microreti smart: tecnologie, sistemi e metodologie di gestione e controllo B. Accumulo energetico: tecnologie e sistemi di gestione e controllo C. Dispositivi innovativi, tecnologie e metodologie di misurazioni per applicazioni smart grid D. Efficienza energetica e fonti energetiche rinnovabili E. Smart energy

F. Catena del valore dell'idrogeno e CCUS

Traiettorie tecnologiche prioritarie

- A.1. Tecnologie e dispositivi e modelli per la evoluzione del sistema elettrico verso la *smart grid* e per garantirne sicurezza e resilienza
- **A.2.** Tecnologie, dispositivi e infrastrutture per la mobilità sostenibile e l'elettrificazione dei trasporti
- **A.3.** Tecnologie e sistemi per l'integrazione delle reti energetiche
- A.4. Tecnologie, dispositivi e modelli per favorire la flessibilità del sistema energetico e la partecipazione dell'utente finale

- **B.1.** Tecnologie per migliorare efficienza, affidabilità e durabilità dell'accumulo, riducendone i costi
- **B.2.** Tecnologie, dispositivi e strumenti di gestione e pianificazione per supportare l'integrazione dei sistemi di accumulo nelle reti energetiche integrate
- **B.3.** Logiche innovative di controllo e gestione dell'accumulo in ambiente *smart grid* per l'erogazione di servizi ancillari

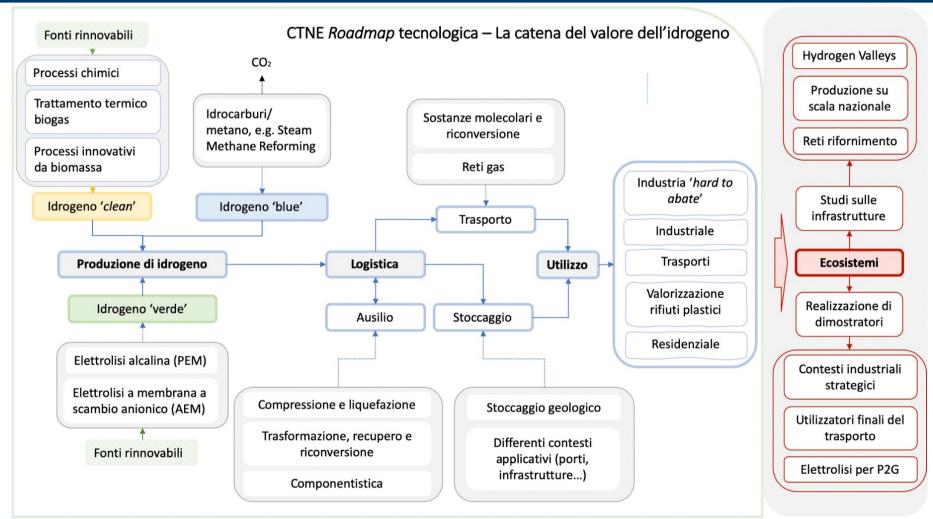
- **C.1.** Tecnologie e dispositivi atti a favorire la digitalizzazione del sistema elettrico e lo smart metering
- C.2. Sistemi e strumenti di misura per efficientare la produzione e gli usi finali dell'energia
- C.3. Sviluppo di sistemi
 evoluti per la gestione
 dei carichi attivi e
 sviluppo di DSM e
 ADA

- **D.1.** Tecnologie e dispositivi innovativi per la produzione di energia da fonte rinnovabile
- D.2. Sistemi di
 cogenerazione
 elettricità-calore per
 applicazioni industriali
 e residenziali
- D.3. Tecnologie per l'integrazione ottimale delle FER nel costruito e nell'ambiente
- D.4. Tecnologie e strumenti per riqualificazione ed ottimizzazione energetica di sistemi esistenti e per lo sviluppo di soluzioni avanzate e sostenibili

- **E.1.** Sviluppo di tecnologie, dispositivi e modelli per sistemi energetici integrati
- **E.2.** Sviluppo di *local energy*communities basate su GD

 e FER
- **E.3.** Tecnologie e processi per la produzione ecosostenibile di *biochemical e biofuel*
- E.4. Tecnologie per il trattamento dei reflui e residui civili e industriali con ridotto impatto ambientale recupero energetico
- **E.5.** Tecnologie per il recupero e la valorizzazione dei cascami termici industriali in un contesto di simbiosi energetica

- **F.1.** Tecnologie e processi per la produzione di idrogeno *clean*
- **F.2.** Utilizzo dell'idrogeno nei settori industriale, trasporti, residenziale
- **F.3.** Logistica dell'idrogeno e valorizzazione della CO2
- F.4. Realizzazione di infrastrutture ed ecosistemi per impieghi dell'idrogeno e della CO2 in applicazioni differenti
- **F.5.** Tecnologie e processi per la cattura e stoccaggio o utilizzo della CO₂


Nuovo ambito prioritario 'Catena del valore dell'idrogeno e CCUS'

- ✓ Tecnologie e processi per la produzione di idrogeno clean
- ✓ Utilizzo dell'idrogeno nei settori industriale, trasporti, residenziale
- ✓ Logistica dell'idrogeno e valorizzazione della CO₂
- ✓ Realizzazione di infrastrutture ed ecosistemi per impieghi dell'idrogeno e della CO₂ in applicazioni differenti

Input per l'aggiornamento del PAT da Programmi e strategie Nazionali: **Strategia Nazionale Idrogeno**, **PNRR** (Piano Nazionale di Ripresa e Resilienza, fondi Next Generation EU), **PNR** (Programma Nazionale per la Ricerca), **PNIEC** (Piano Nazionale Integrato Energia e Clima), **Mission Innovation**, **IPCEI-idrogeno** (Important Projects of Common European Interest)

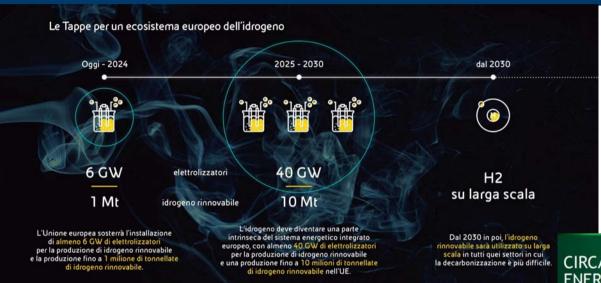
Consultazione con Associati, lavori del Comitato Tecnico-Scientifico e dei Comitati Tematici, del Consiglio Direttivo e della Segreteria Tecnica

Importanza del vettore idrogeno

Perché si punta sull'idrogeno nel processo di decarbonizzazione

- Mezzo per accumulare energia e riutilizzarla in maniera pulita grazie all'**assenza di emissioni di gas serra** (CO₂) in tutti gli usi finali (**vettore energetico**), sia combustione (calore) che uso in FC (energia elettrica)
- Versatilità negli usi finali
- Facilmente ottenibile dall'acqua, da combustibili fossili (metano, petrolio, carbone), da biomasse, ma richiede energia per liberarlo dalle molecole in cui è legato (è molto socievole!!!) e ad esclusione dell'elettrolisi dell'acqua emette CO₂

Come lo si utilizza oggi (principalmente, con almeno il 96% da combustibili fossili)


- Ammoniaca e derivati (fertilizzanti)
- Raffinazione
- Metanolo

Come lo si può (potenzialmente) utilizzare nel processo di decarbonizzazione

- **Industria non elettrificabile** hard to abate (siderurgia, cementifici, cartiere, vetrerie, raffinerie...)
- Trasporto (pesante e lunga distanza: treni, autotreni, navi; in misura minore leggero)
- **Produzione di energia**: accumulo stagionale (P2G, metanazione, rete gas → stabilizzazione rete elettrica, sector coupling)
- **Residenziale** (miscelato)

Strategia UE e Strategia nazionale idrogeno

CIRCA IL 2% DI PENETRAZIONE DELL'IDROGENO NEL CONSUMO ENERGETICO FINALE ENTRO IL 2030 | FINO AL 20% ENTRO IL 2050

Applicazioni per la mobilità

(es. camion a lungo raggio e

Applicazioni industriali (es.

Miscelazione idrogeno nella

chimica e raffinazione)

rete del gas

2030

2% circa

Diffusione utilizzo idrogeno

Fonte: *Hydrogen Council*

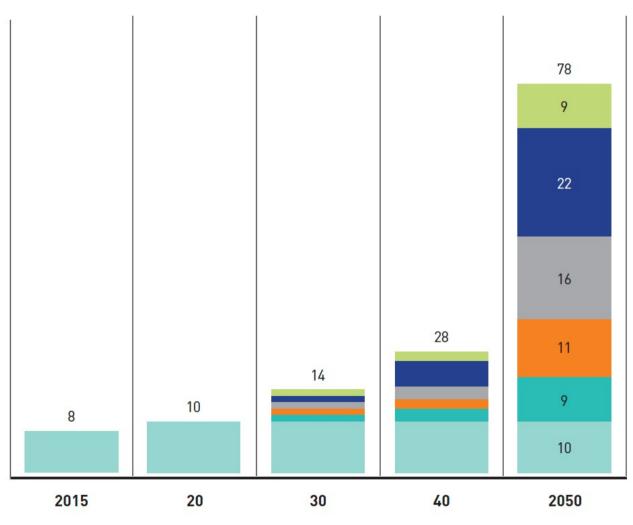
EJ Exajoule 1 EJ = 10^{18} J 1 EJ \approx 7 Mtonn H₂

Italia 2020 ≈ 0.48 Mtonn H₂

Generazione elettrica/ accumulo

Trasporti

Calore industriale


Cogenerazione residenziale

Nuovi usi come reagente

Usi tradizionali come reagente

Il Cluster Tecnologico Nazionale Energia Idrogeno: difficoltà, limitazioni, barriere

Difficoltà, limitazioni e barriere

- Scarsa domanda attuale (ca. 1% dei consumi finali di energia)
- Assenza di infrastrutture di trasporto e distribuzione dedicate
- Necessità di produrlo **senza CO₂ associata** (CH₄, biomassa) → **idrogeno verde** (elettrolisi)
- Esigenza di installare FER in aggiunta ai target previsti al 2030 e 2050 già molto sfidanti
- Costi elevati dell'idrogeno verde

verde: 5-6 €/kg nessuna emissione

(in diminuzione per possibile riduzione costi EE da FER, e costi ed efficienza degli elettrolizzatori)

blu: 1,5-2,0 €/kg CO₂ catturata

grigio: 1-1,5 €/kg 9 kg CO₂/kg H₂

• L'idrogeno blu non contribuisce alla flessibilità del sistema elettrico, difficoltà dello stoccaggio geologico della CO₂ catturata (unica soluzione per grandi quantità), costi associati, perdite residuali di CO₂ e di CH₄ (nel processo di produzione dell'idrogeno).

Esigenze di ricerca in tutti i settori

produzione, stoccaggio, distribuzione, usi finali: importanza delle hydrogen valleys

Il Cluster Tecnologico Nazionale Energia Finanziamenti

PNRR, Piano Nazionale di Ripresa e Resilienza

Mission Innovation (ENEA, CNR, RSE, IIT)

IPCEI, Importanti Progetti di Comune Interesse Europeo

Horizon Europe

Ricerca di Sistema Elettrico (RSE, ENEA, CNR)

PNR, Programma Nazionale per la Ricerca

Progetti Nazionali e Regionali

Investimenti Privati

Il Cluster Tecnologico Nazionale Energia Ruolo Stakeholder

- Corretto investimento delle disponibilità finanziarie
- Identificazione strategica dell'uso finale trasporto privato, residenziale, industria hard-to-abate, situazioni non elettrificabili
- Definizione del mix produttivo (costi del trasporto e nuove infrastrutture)
 - a) produzione on-site per piccole, medie e grandi utenze (oggi circa 85% della produzione)
 - b) trasporto (compresso su gomma, liquefatto su gomma/rotaia)/distribuzione
- Norme di sicurezza globale
- Integrazione dei diversi strati della catena del valore
- Sviluppo del progetto, compresa la produzione di energia rinnovabile, la dissalazione dell'acqua, e la ricerca di soluzioni di stoccaggio
- Sviluppatori devono trovare i clienti per l'idrogeno verde e al contempo sussidi per colmare il gap di costo tra l'idrogeno verde e quello grigio/blu

Il Cluster Tecnologico Nazionale Energia Ruolo Stakeholder

- Dialogo e consultazione ad ogni livello tra tutti gli stakeholder (industria, ricerca, istituzioni, TSO/DSO, terziario logistica enti di regolamentazione e controllo, organismi di formazione, servizi di comunicazione) IPCEI, Hydrogen Valley
- Cruciale sinergia per un più rapido, sistemico e strutturale sviluppo di competenze per superare le varie barriere alla diffusione del vettore idrogeno: tecnologiche, economico/finanziarie, normative, sociali
- Il CTNE accogliendo al proprio interno industria, ricerca ed organismi territoriali rappresenta un fondamentale organismo utile allo scopo, anche come riferimento, per il proprio ruolo, per i Ministeri coinvolti nell'attuazione della transizione energetica ed ecologica

